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Abstract

Fundamental understanding of the complex behavior of small droplets or particles in wall bounded
turbulence and their interaction with the surrounding ¯uid is critical in a number of industrial processes.
One approach for gaining valuable insight is the direct numerical simulation (DNS) of turbulence in
conjunction with numerical computation of particle trajectories. Most previous work was limited to
dilute suspensions of non-colliding particles. Part I of this paper extends previous methods by allowing
for interparticle collisions. Part II presents results for the rate of collision between aerosol droplets.
# 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

An improved understanding of the behavior of small particles or droplets in wall-bounded

turbulence could bene®t the design and optimization of a wide variety of processes in the

petroleum and chemical industries. The direct numerical simulation (DNS) of turbulence is a

suitable research tool for elucidating some of the unresolved issues surrounding the behavior of

dilute suspensions of small particles at low Reynolds numbers. A recent review by McLaughlin

(1994) discusses the strengths and limitations of this approach.

The ®rst goal of this work was to extend previous methods of particle tracking in DNS by

incorporating interparticle collisions. This allows the application of such methods to higher

concentrations of the particulate phase. Part I describes an algorithm for simulating the
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dispersion of small coalescing and depositing droplets in a turbulent channel ¯ow. The ¯ow
Reynolds number, based on the hydraulic diameter and the bulk velocity, was 7050. The e�ect
of the droplets on the turbulence of the carrier gas was neglected.
Most previous work has been limited to very dilute suspensions of non-interacting particles.

The recent work by Sundaram and Collins (1994), who studied collision statistics in a DNS of
a particle-laden isotropic ¯ow, is an exception. Also related is the work of Lavieville et al.
(1995) who studied the behavior of colliding particles in a large eddy simulation of isotropic
turbulence. This paper extends a previous particle tracking algorithm to allow for interparticle
collisions.
Chen et al. (1995) have previously o�ered a brief description of the algorithm and some

preliminary results. In a typical run, a large number of droplets of a given size are released in
the simulated channel ¯ow at random positions according to a uniform distribution. At the
time of the release, the channel ¯ow is stationary and fully-developed. In the absence of
particle feedback e�ects, it remains stationary and fully-developed for the duration of a run.
Then, the evolution of the ¯uctuating three-dimensional gas ¯ow ®eld and the droplet
trajectories are calculated for a prescribed length of time by integrating the governing
equations of motion.
The review by McLaughlin (1994) pointed out some of the uncertainties in calculating the

hydrodynamic force exerted on a dispersed particle. Notwithstanding the di�culties in
formulating an exact equation of motion, the study of simulated behavior in turbulent ¯ows
has provided valuable information that is very di�cult to obtain experimentally.

Fig. 1. Channel ¯ow geometry.
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Drag, lift, Brownian, and gravitational forces on the droplets are accounted for. However,
for the range of conditions examined in this work, the e�ect of Brownian and gravitational
forces was negligible.
Collisions are detected as a geometric interception of droplet trajectories. All interdroplet

collisions are assumed to lead to instantaneous coalescence. Droplets approaching either of the
channel walls to within the mean free path of the molecules of the surrounding gas are
considered deposited and they are removed from the simulation. The accuracy and
computational e�ciency of the algorithm are discussed.

2. Methodology

2.1. Turbulent channel ¯ow

A statistically stationary, fully-developed, isothermal ¯ow of a Newtonian ¯uid bounded by
two vertical and parallel ¯at walls was considered. The channel walls were assumed rigid and
smooth. The ¯ow geometry and the coordinate system used in the simulation are shown in
Fig. 1. The origin of the coordinate system is located on the centerline, and the x, y and z axes
point in the streamwise, normal, and spanwise directions, respectively. The walls con®ning the
¯ow were of in®nite extent and at rest with respect to the coordinate system. The ¯ow was
assumed to be incompressible and it was driven by a constant mean pressure gradient.
The velocity of the ¯uid was obtained by a numerical solution of the Navier±Stokes

equation:

@u�

@t�
� u�� r4 �u� � ÿ r4 �p� � r�2u�: �1�

In (1), all physical quantities are made dimensionless in terms of the friction velocity, u*, the
kinematic viscosity of the ¯uid, n, and the ¯uid density, rf. A `` + '' superscript denotes a
dimensionless quantity. The symbols u+, p+ and t+ denote the dimensionless ¯uid velocity, the
dimensionless hydrodynamic pressure and the dimensionless time. The friction velocity, u*, is
de®ned by

u� �
��������
jtwj
rf

s
�2�

where tw is the wall shear stress. Table 1 lists various physical parameters characteristic of the
wall region which are used throughout this work to scale the reported results. In Table 1, mp

denotes the mass of a droplet.

Table 1
Nondimensionalization Factors

Velocity Length Time Acceleration Force

u* n/u* n/u*2 u*3/n mpu*3/n
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The ¯uid was assumed to be incompressible

r4 �u� � 0: �3�
Periodic boundary conditions were imposed in the downstream and spanwise directions, with
periods Lx and Lz, respectively. Rigid, no-slip boundary conditions were imposed on the
channel walls:

u� � 0; Y � h�;ÿh�; �4�
where h is the channel half width and Y denotes the dimensionless value of y. (The symbol y+

will be used to denote the distance measured from the closest channel wall.)
The Navier±Stokes equation was integrated in time using a fractional time-stepping method.

All hydrodynamic ®elds were discretized within a domain of size Lx�2 h�Lz using
pseudospectral methods. Fourier series were used in the downstream and spanwise directions.
Chebyshev polynomials were used in the direction normal to the walls. The numerical
techniques that were used to perform the simulations of the channel ¯ow have been described
by Lyons et al. (1991) and Chen and McLaughlin (1995).

2.2. Droplet tracking

2.2.1. Droplet equation of motion
The computation of the trajectories of a polydisperse suspension of small spherical droplets

was based on a numerical integration of their equation of motion:

dV�

dt�
� CDF

�
d � F�b � F�l ÿ g�x̂; �5�

where V is the droplet Lagrangian velocity, t is the time, g is the acceleration of gravity, and xÃ
denotes a unit vector in the x-direction. All quantities were made dimensionless with the
friction velocity, the kinematic viscosity of the gas, and the mass of the droplet. The
correlation suggested by Clift et al. (1978) was used to compute the coe�cient CD. For values
of the droplet Reynolds number, Rep, less than 0.01, the Proudman±Pearson result was used to
compute CD:

CD � 1� 3

16
Rep: �6�

For 0.01 < Rep<20,

CD � 1� 0:1315Re0:82ÿ05w; �7�
where w= log10Rep.
According to (5), contributions to the acceleration of a droplet of unit mass are made by the

wall-corrected drag (CDFd), Brownian (Fb), lift (Fl), and gravity forces. The coe�cient CD

corrects the Stokes drag force to account for inertial e�ects at non-negligible droplet Reynolds
numbers. Methods for incorporating the e�ects of instantaneous collisions on droplet
trajectories are discussed in the following section.
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A detailed discussion of the forces in (5) may be found in Chen and McLaughlin (1995).
Brie¯y, the drag force includes wall corrections and molecular slip e�ects. The latter e�ects are
accounted for by the Cunningham slip factor, which is de®ned as follows:

Cc � 1� 2lm
d
�1:257� 0:4eÿ0:55d=lm �; �8�

where d is the particle diameter and lm is the molecular mean free path. The dimensionless
particle relaxation time, t, is a useful way of characterizing particle inertia. It is de®ned by

t� � Cc
�2S� 1�d�2

36
�9�

where S is the particle±¯uid density ratio.
The particle equation of motion in (5) is considered valid everywhere along the trajectory of

a droplet (particle) except at the instants of collisions where the droplet velocity changes
discontinuously. As two droplets approach within a few radii, the hydrodynamic force exerted
on each droplet is a�ected by the in¯uence of the disturbance ¯ow ®eld of the other. The form
of the hydrodynamic forces in (5) does not account for hydrodynamic interaction between
droplets. Although the suspensions to be considered are dilute, hydrodynamic interactions can
be signi®cant when two droplets approach each other. Marble (1964) and Sundarajakumar and
Koch (1996) have discussed the conditions under which the hydrodynamic interaction can be
neglected. In this paper, all simulations are initiated with monodisperse droplets. Coalescence
of droplets can produce some doublets and triplets. However, the vast majority of the droplets
were singlets in all the calculations to be reported. Finally, the possibility of a force ®eld
surrounding a droplet (electrostatic, Van der Waals, etc.) was not considered, and any e�ects
of droplet rotation, internal circulation, or lubrication forces at close proximity were also
neglected.

2.2.2. Evaluation of ¯uid velocities at droplet positions
The calculation of the drag and lift forces appearing in (5) requires the evaluation of the

undisturbed ¯uid velocity at the instantaneous droplet positions. The DNS supplies the
Eulerian velocity values on a three-dimensional grid. Since the instantaneous position of a
droplet does not, in general, coincide with a grid point, an interpolation of the Eulerian
velocity at the droplet locations is needed.
An accurate evaluation of droplet velocities is critical for studying collisions because these

depend on the often small relative droplet velocity. One source of error is the use of
interpolated ¯uid velocities. Several methods, such as direct summation (DS), partial
Hermite interpolation (PHI), Lagrangian interpolation (LGI) and linear interpolation (LNI),
can be used to obtain the ¯uid velocity at the droplet location. Yeung and Pope (1988),
Balachandar and Maxey (1989), and Kontomaris et al. (1992) studied the accuracy of
di�erent interpolation methods relative to a direct summation of the spectral Fourier series
which provides velocity values as accurate as the DNS itself. Partial Hermite interpolation was
found to provide acceptable accuracy at a much lower computational cost than direct
summation.
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In this paper, partial Hermite interpolation method was used to obtain the ¯uid velocity at a
droplet's location. The e�ect of interpolation errors on the observed collision rate is assessed in
a later section.

2.2.3. Droplet displacement
The particle trajectories are viewed as a succession of small increments. Except on the ®rst

time step, a second order Adams (explicit) method was used to compute the increments. It takes
the form:

Xn�1 � Xn � �c1Vn�1 ÿ c2Vn�Dt; �10�
where X and V denote the droplet location and velocity, respectively. The subscripts ``n'' and
``n + 1'' denote the time at the beginning of the nth time step and the end of the nth time step,
respectively, and c1 and c2 are constants (Adams algorithm factors). On the ®rst two time
steps, the latter constants are 1 and 0, respectively. Thereafter, they are equal to 1.5 and 0.5,
respectively. The time step for the integration of the equation of particle motion was equal to
that used for the integration of the ¯ow equations.

2.2.4. Initial droplet placement
The initial allocation of droplets is speci®ed according to the objective of a run. For the runs

reported in Part II, droplets were released at random positions throughout the channel. In all
cases, the volume fraction of the dispersed phase was su�ciently small that the probability of
two droplets overlapping was insigni®cant. The initial coordinates of the droplets satis®ed the
following condition:

�0;ÿh� d=2; 0�RX0R�Lx; hÿ d=2;Lz�: �11�
Droplets are always con®ned within the computational domain by recycling droplets exiting in
the periodic directions. At the initial time, the velocities of the droplets were set equal to the
unoccupied local ¯uid velocities at the droplet locations. Isokinetic injection simulates the case
of droplet precipitation from the gas phase, assuming that the droplet size is not much larger
than the nuclei. Thereafter, the droplet motion was governed by its equation of motion. To
obtain a trajectory, the droplet equation of motion was integrated simultaneously with the
Navier±Stokes equation.

2.2.5. Simulation of interdroplet collisions
The tracking algorithm discussed in the previous subsection is suitable only for non-

interacting droplets (particles). In this subsection, it is extended to incorporate the e�ects of
interdroplet collisions on individual droplet trajectories as has been previously described by
Chen et al. (1995). Lavieville et al. (1995) have also presented a method for incorporating
particle collisions in a large eddy simulation of isotropic turbulence based on an adaptation of
an earlier algorithm by Hopkins and Louge (1991). Finally, Sundaram and Collins (1996) have
examined, in some detail, the numerical aspects of simulating the motion of suspensions of
®nite-volume particles in DNS of isotropic turbulence. Related experience can also be drawn
from considerations of the more general problem of collisions between objects of arbitrary
(and often changing) shapes in simulated motion relative to each other and to stationary
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objects or boundaries. This problem is of common interest to a number of diverse ®elds
including molecular dynamics, particle dynamics and granular mechanics, computer animation
of dynamic systems or virtual interactive environments, and robotics. The methodology for
detecting contacts remains similar despite the various origins of relative object motion which
range from prescribed dynamic laws of varying degrees of complexity to completely arbitrary
forcing speci®ed interactively.
The e�ect of particle acceleration resulting from the interaction with the surrounding

¯uid and gravity is accounted for at a sequence of discrete times, tn, uniformly spaced at
time intervals, Dt. Between successive time instants, [tn, tn + 1], the trajectories of the
particles are fully determined by their known initial locations, Xn, and velocities, Vn.
Therefore, particle pairs that are on a collision course can be identi®ed and the anticipated
discontinuous change in their velocities and trajectories at impact can be used to determine
their positions and velocities at the end of a time step. The alternative approach of
retroactively correcting for collisions in the previous time step when particles are found
to overlap can seriously underestimate the collision rate for a comparable time step size
(Sundaram and Collins, 1996). Consideration is restricted to binary collisions because the
likelihood of multiple simultaneous contacts in dilute suspensions of instantaneously colliding
particles is negligible. Fig. 2 shows the sequence of steps followed in simulating trajectories of
colliding particles.

Fig. 2. Collision algorithm.
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2.2.6. Identi®cation of likely collision partners
Within a small time interval, Dt, only collisions between neighboring particles are likely.

Substantial computational savings can result from eliminating remote particles from the search
for collision pairs. One approach for designating neighbors of a given particle is to maintain a
list of other particles located within an appropriately chosen distance. This approach is e�cient
for suspensions of a few slowly moving particles for which the required neighbor lists are short
and need to be updated only infrequently (Hogue and Newland, 1994; Sundaram and Collins,
1996). In rapidly dispersing suspensions involving a large number of particles, it is more
e�cient to partition the domain of interest and reduce the search space to only neighboring
cells.
In general, one could divide the computational domain into kxkykz non-overlapping slices

of a uniform size (Lx/kx) � (2 h/ky) � (Lz/kz). The search for collision partners for a given
particle would be limited to the subset of other particles in the same or any of the
surrounding 26 slices. In this work, a simpler strategy was used. The channel was divided
into kxkz non-overlapping slices. Thus, the search for collision partners was limited to the
particle containing and the surrounding eight slices. The reason for using a two-dimensional
partition was that large accumulations of droplets occurred in some of the runs to be discussed
and, as a result, the memory requirements for the partitioning would have been too large. The
choice of spacing for the collision search lattice is discussed in the section on simulation
procedures.

2.2.7. Minimum particle separation within a time step
The absence of particle acceleration within a time step leads to constant particle velocities

before collisions and allows collision detection from purely kinematic and geometric
considerations. Fig. 3 depicts a pair of particles (droplets) in free-¯ight originating at time tn
from known positions and with known velocities. It is convenient to describe the relative
particle motion in a frame of reference, x'±y', with its origin on one of the two approaching
particles, say P2, and its x'-axis anti-parallel to their relative velocity,

wn � V1n ÿ V2n; �12�
where V1n and V2n are the velocities in the laboratory of particle 1 (P1) and particle 2 (P2),
respectively, in the nth time step. The y'-axis lies on the plane de®ned by the vectors, wn and rn.
The particle separation vector rn is de®ned by

rn � X1n ÿ X2n; �13�
where Xn and X2n are the coordinates of P1 and P2 at the end of the nth time step in the
laboratory frame. The relative motion of the two particles is con®ned to the x'±y' plane and its
trajectory is a straight line parallel to the x'-axis. Fig. 3 shows that the closest possible
approach , sm, of the centers of the two particles is

sm � rn sin y; �14�
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where

y � cosÿ1
rn � wn

rnwn

� �
0RyRp: �15�

The magnitudes of the relative velocity and separation vectors are denoted by wn and rn,
respectively. The moment of closest approach, tm, occurs when the center of P1 crosses the y'-
axis (see Fig. 3). It is given by

tm � tn � rn cos y
wn

: �16�

The above results were also obtained by Chen et al. (1995) and Sundaram and Collins (1996)
from a minimization of the magnitude of the particle separation distance. If the motion of the
two particles were allowed to continue uninterrupted, the variation of their separation vector
from its initial value at tn could be expressed analytically in terms of their constant relative
velocity as

r�t� � rn � �tÿ tn�wn: �17�
Therefore, the particle separation distance would vary as

r�t� �
��������������������������������������������������������������������
r2n � 2�rn � wn��tÿ tn� � w2

n�tÿ tn�2
q

: �18�

Fig. 3. Coordinate system for relative motion of droplet pairs.
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Minimization of the functional representation of r(t) based on the condition

@r�t�
@t
� 0 at t � tm �19�

leads to the evaluation of the time at which the particle separation distance is a minimum:

tm � tn ÿ rn � wn

w2
n

�20�

and the minimum separation is given from (18) as

sm � r�tm�: �21�
It should be noted that condition (19) does not constrain the time interval within which a
minimum is sought. It can be easily veri®ed that these results are identical to (16) and (14)
obtained from a geometrical interpretation of the collision encounter.
The time of the closest approach, tm, determined from (16) or (20) does not necessarily fall

within the current time step. The instant of minimum separation within [tn, tn + 1], t*m, can be
determined with the aid of Fig. 4, which depicts the possible trajectories of the relative motion
of a particle pair over the time interval of interest, in the transformed frame of reference x'y'.
The trajectories are straight lines anti-parallel to the x'-axis, fully characterized by the initial
coordinates, Xn, and ®nal coordinates, Xn + 1, of particleP1. Three cases are identi®ed: in case
A, the particles are moving apart from each other throughout the current time step; therefore,
t*m=tn. In case B, the particles are moving toward each other throughout the duration of the

Fig. 4. Relative droplet motion over a time step.
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current time step. Therefore, they are the closest at the end of the current time step, which
givest*m=tn + 1. Finally, in case C, the particles achieve a minimum separation at time
t*m=tm between tn andtn + 1. The x' coordinate of P1 changes from positive to negative. The
time to minimum separation within a time step for all these cases can be expressed compactly
as (Sundaram and Collins, 1996)

t�m � tn �H�tm ÿ tn��tm ÿ tn � �tn�1 ÿ tm�H�tm ÿ tn�1��; �22�
where H is the Heaviside function. In all cases, the minimum separation distance within the
current time step is

s�m � r�t�m�: �23�

2.2.8. Contact detection
Contacts between neighboring particles within a time step are detected by determining

whether their minimum separation becomes less than or equal to the sum of their radii:

s �m Rd12; �24�
where

d12 � d1 � d2
2

: �25�

A value of s*m=0 indicates a head on collision; eccentric collisions correspond to positive
values for s*m. When s*m=d12, the droplets just touch each other.
For pairs that collide, the exact moment of contact, tc, is determined by solving the equation

r�tc� ÿ d12 � 0: �26�
The two roots of the above equation are

tc � tn ÿ rn � wn

w2
n

12
��������������
1ÿ Kn

p� �
�27�

where

Kn � r2nw
2
n

�rn � wn�2
1ÿ d212

r2n

� �
: �28�

The relative velocity and separation vectors in the above expressions are calculated at
t= tn. For colliding particles, both roots of (27) are real. This may be shown by using the fact
that

�rn � wn�2 ÿ w2
nr

2
n � w2

nd
2
12 � w2

n�d212 ÿ r2n sin
2 y�: �29�

For a collision to occur, the right hand side of (29) must be non-negative. Thus, both roots of
(27) must be real. The choice between the two roots becomes clear when (27) is rewritten as

tc � tm2
rn � wn

w2
n

��������������
1ÿ Kn

p
: �30�
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The time of contact, tc, in general, precedes the time of minimum separation, tm, because the
calculation of tm allows particles to interpenetrate. To satisfy the requirement that tcRtm, given
that rn�wnR0, the plus sign is selected in the above equation. For droplets which move
tangentially at contact, tc=tm. The minus sign corresponds to the ®nal instant of contact after
imaginary interpenetration of the two spheres.
The coordinates of the centers of the particles at the instant of collision can be determined

by

Xc � Xn � �tc ÿ tn�Vn: �31�

2.2.9. Droplet coalescence
It was assumed that two droplets would combine instantaneously upon contact to form a

larger spherical droplet. For equal size droplets, the center of the child droplet is at the
midpoint of the line between the centers of the parent droplets. Fig. 5 schematically illustrates
the coalescence of two droplets. The outcome of a collision can be determined from
conservation of mass and conservation of momentum. Kinetic energy is not conserved during
coalescence. Conservation of mass was used to calculate the size of the child droplet:

d3 �3
���������������
d31 � d32

q
; �32�

where it was assumed that the density of the child droplet is the same as that of the parents.

Fig. 5. Schematic illustration of droplet coalescence.
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Conservation of translational momentum was applied to obtain the velocity of the child
droplet:

m1V1 �m2V2 � m3V3: �33�
In (33), subscripts ``1'' and ``2'' denote the parent droplets, the subscript ``3'' denotes the child
droplet, m is the droplet mass, and V is the droplet velocity. After the collision, the child
droplet will have the following velocity:

V3 � V1d
3
1 � V2d

3
2

d33
: �34�

The position of the child droplet at the end of the current time step is expressed as follows:

X3�tn�1� � X1c � X2c

2
� �tn�1 ÿ tc�V3; �35�

where X1c and X2c denote the coordinates of P1 and P2 at the moment of the collision,
respectively.
The assumption of coalescence used in this work can be replaced with rules prescribing other

types of impact dynamics. For example, elastic collisions between rigid or deformable particles
with smooth or rough surfaces could be simulated. One could also assign a probability of
coalescence.
The omission of hydrodynamic droplet-droplet interactions which is equivalent to an

assumption of perfect capture e�ciency (also made by Sa�man and Turner, 1956) may lead to
a signi®cant overestimation of the collision rates for smaller droplets. Multiple collisions of a
droplet within a time step were also neglected. This may introduce some errors in the collision
rate. However, the error is small for small mass loadings (volume fractions) and small time
steps.

2.3. Simulation of droplet-wall collisions

In the simulations to be reported, the criterion of the wall deposition of droplets was

d�Rl�m; �36�
where d+ is the dimensionless gap between the droplet and the nearest wall. At this separation,
continuum mechanics is no longer valid, which means that the wall-drag corrections used in
the droplet equation of motion are not valid. Furthermore, it is likely that the Van der Waals
attraction between the droplet and the wall will cause deposition at this separation.
In the simulations, it was also assumed that the droplets wet the walls if they deposit on the

walls. The possibility of splashing caused by inertial droplet±wall collisions was not considered.
Deposited droplets were permanently removed from the calculation. The possibility of re-
entrainment was not allowed for. As a result, the channel was gradually depleted of droplets.
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3. Simulation procedures

3.1. Physical parameters

The independent input parameters de®ning a numerical experiment are the properties of the
¯uid (temperature, T, pressure, p, density, rf, kinematic viscosity, n, and molecular diameter,
sm), the ¯ow variables (channel width, 2 h, and bulk velocity, ub), and the properties of the
particle phase (droplet diameter, d, droplet density, rp, and initial droplets volume fraction,
f0). The ¯uid properties were ®xed for all the simulations at the values listed in Table 2 which
correspond to air at ambient conditions.
The ¯uid molecular mean free path is needed for the Cunningham slip correction. It is

calculated from the kinetic theory of gases:

lm � 1���
2
p

psm 2nm
; �37�

where the molecular number density is given by

nm � NAP

RT
�38�

with NA=6.023 � 1023 molÿ1, R= 82.057 cm3 atm/(mol�K).
A Reynolds number, Re, based on the bulk velocity and the hydraulic radius, Rh=h, can be

calculated as

Re � 4Rhub
v

: �39�

The friction velocity is then calculated as

u� � jtwj
rf

� �1=2

; �40�

where

jtwj �
���� dPdx

����h; �41�

and ����dPdx
���� � f

1

2
rfu

2
b

1

Rh
: �42�

The friction factor, f, is given by the Blasius correlation:

f � 0:0791

Re0:25
; �43�

for Re < 105. The wall length and time scales are then calculated as l* = n/u* and t* = n/u*2.
The channel half-width in wall units is equal to h+=h/l*.
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Application to the case of ¯ow of air at ambient conditions (see Table 2a) yields a value of
lm=0.07 mm for the molecular mean free path. For ub=11.42 m/s and 2 h = 4.63 mm, the
channel Reynolds number becomes Re = 7050, yielding a friction velocity u* = 75 cm/s and
wall length and time scales equal to 20 mm and 26.67 ms, respectively. Therefore, the channel
half-width in wall units is equal to h+=125. Table 2b summarizes the calculated ¯ow
parameters. Simulation results for this set of conditions are reported in Part II of this paper.
The three primary variables characterizing the droplet phase (d, rp, and f0) for each run can

be used to calculate a number of other variables to guide the choice of computational
parameters and facilitate the interpretation of results. These include the droplet-to-¯uid density
ratio, S= rp/rf, the initial number concentration of droplets, C0, the particle relaxation time,
the Schmidt number based on the Brownian particle di�usivity, the Cunningham correction
factor, and the number concentration in wall units.
The initial particle number density, C0, is calculated from the known particle volume

fraction as

C0 � f0

Vp
; �44�

where

Vp � p
6
d3 �45�

is the droplet volume. The initial droplet mass loading, ml, is calculated as

ml � f0S

1ÿ f0

: �46�

An estimate of the initial mean droplet separation, Sd, is obtained as

Sd � d
fmax

f0

� �1=3

ÿ1
 !

; �47�

where, for a cubic array of spherical particles, fmax=p/6. Expressions for the Cunningham slip

Table 2a
Input parameters for the ¯uid (ambient air) and the ¯ow conditions

P T n rf sm ub 2 h
(atm) (K) (cm2/s) (g/cm3) (AÊ ) (m/s) (mm)

1 298 0.15 1.12 � 10ÿ3 3.6 11.42 4.63

Table 2b
Calculated ¯ow parameters

lm Re u* l* t* h+

0.07 mm 7050 75 cm/s 20 mm 26.67 ms 125
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factor, the particle relaxation time, and the Schmidt number were given in Section 2. The single
particle terminal velocity in quiescent ¯uid was calculated as

Vt � t 1ÿ 1

S

� �
g=CD1tg=CD �48�

for heavy droplets in a gas.
The range of values for the parameters of the droplet phase for the simulations in Part II of

this paper are listed in Table 3. Instead of the droplet density, Table 3 gives the droplet-to-¯uid
density ratio, S= rp/rf. The value S= 713 corresponds to olive oil droplets in air under
ambient conditions. Other calculated parameters for the droplet phase are summarized in
Table 4 (where Sk is the Schmidt number).

3.2. Computational parameters

Once one speci®es the physical parameters of a simulation, the numerical parameters are
largely determined by accuracy, stability, and computational e�ciency considerations. A
stationary, fully-developed velocity ®eld is used to start the channel ¯ow simulation. The
required channel ¯ow numerical parameters include the periods in the x and z directions, Lx

Table 3
Input parameters for the droplet phase for the various simulation runs reported in Part II

Run ID d (mm) S f0

Re= 7050
1 3.09 713 5.84 � 10ÿ6

2 4.4 713 1.69 � 10ÿ5

3 5.42 30 2.10 � 10ÿ5

4 5.42 100 2.10 � 10ÿ5

5 5.42 713 3.15 � 10ÿ5

6 7.78 713 9.32 � 10ÿ5

7 8.99 713 1.44 � 10ÿ4

8 9.96 20 1.30 � 10ÿ4

9 9.96 100 6.52 � 10ÿ5

10 9.96 142.6 6.52 � 10ÿ5

11 9.96 213.9 6.52 � 10ÿ5

12 9.96 300 6.52 � 10ÿ5

13 9.96 713 1.30 � 10ÿ4

14 9.96 1100 3.26 � 10ÿ5

15 9.96 2000 3.26 � 10ÿ5

16 14.1 713 1.89 � 10ÿ4

17 16.8 100 1.56 � 10ÿ4

18 16.8 300 1.56 � 10ÿ4

19 16.8 713 6.26 � 10ÿ5

20 16.8 713 1.56 � 10ÿ4

21 16.8 713 2.19 � 10ÿ4

22 16.8 713 3.13 � 10ÿ4

23 16.8 1273 1.56 � 10ÿ4
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and Lz, the numbers of grid points in the x, y and z directions, Nx, Ny and Nz, and the time
step, Dt. Recommended values of these parameters are listed in Table 5.
The work of Lyons et al. (1991) and others for single phase channel ¯ow indicated that the

downstream and spanwise periods should be several times larger than the channel width. This
is necessary to describe the largest eddies that contain a signi®cant amount of energy. Since
turbulence structures in the wall region tend to be elongated in the downstream direction,
previous workers have generally used a larger period in the x direction than in the z direction.
However, in a simulation for Re = 7050, McLaughlin (1989) chose the spanwise period to be
equal to downstream period. This was because the downstream period was unusually short
(630 wall units) relative to the channel width (250 wall units) and it was desirable that the
spanwise period length should be much larger than the spanwise streak spacing (100 wall
units). In spite of the small downstream period, his turbulence intensities agreed well with
results of simulations with much larger periods in the viscous wall region. Thus, his
computational box size was used in the simulations at Re= 7050 reported in Part II.

Table 4
Calculated parameters for the droplet phase for the various simulations reported in Part II

Run ID C0(cm
ÿ3) ml S+

d d+ Cc t+ V+
r Sc

1 3.78 � 105 0.0042 6.76 0.155 1.057 1.0 3.48 � 10ÿ4 1.69 � 106

2 3.78 � 105 0.0120 6.69 0.220 1.040 2.0 6.94 � 10ÿ4 2.44 � 106

3 2.52 � 105 0.0006 7.65 0.271 1.032 0.126 4.26 � 10ÿ5 3.03 � 106

4 2.52 � 105 0.0021 7.65 0.271 1.032 0.421 1.45 � 10ÿ4 3.03 � 106

5 3.78 � 105 0.0225 6.65 0.271 1.032 3.0 1.05 � 10ÿ3 3.03 � 106

6 3.78 � 105 0.0665 6.53 0.389 1.023 6.0 2.13 � 10ÿ3 4.39 � 106

7 3.78 � 105 0.1027 6.46 0.450 1.020 8.0 2.84 � 10ÿ3 5.09 � 106

8 2.52 � 105 0.0026 7.43 0.498 1.018 0.280 9.29 � 10ÿ5 5.65 � 106

9 1.26 � 105 0.0065 9.47 0.498 1.018 1.40 4.84 � 10ÿ4 5.65 � 106

10 1.26 � 105 0.0093 9.47 0.498 1.018 2.0 6.93 � 10ÿ4 5.65 � 106

11 1.26 � 105 0.0139 9.47 0.498 1.018 3.0 1.04 � 10ÿ3 5.65 � 106

12 1.26 � 105 0.0196 9.47 0.498 1.018 4.2 1.46 � 10ÿ3 5.65 � 106

13 2.52 � 105 0.0927 7.43 0.498 1.018 10.0 3.48 � 10ÿ3 5.65 � 106

14 6.30 � 104 0.0359 12.07 0.498 1.018 15.4 5.37 � 10ÿ3 5.65 � 106

15 6.30 � 104 0.0652 12.07 0.498 1.018 28.0 9.78 � 10ÿ3 5.65 � 106

16 1.26 � 105 0.1348 9.20 0.705 1.012 20.0 6.94 � 10ÿ3 8.04 � 106

17 6.30 � 104 0.0156 11.74 0.840 1.010 4.0 1.37 � 10ÿ3 9.60 � 106

18 6.30 � 104 0.0468 11.74 0.840 1.010 12.0 4.13 � 10ÿ3 9.60 � 106

19 2.52 � 104 0.0446 16.21 0.840 1.010 28.0 9.84 � 10ÿ3 9.60 � 106

20 6.30 � 104 0.1112 11.74 0.840 1.010 28.0 9.84 � 10ÿ3 9.60 � 106

21 8.82 � 104 0.1562 10.39 0.840 1.010 28.0 9.84 � 10ÿ3 9.60 � 106

22 1.26 � 105 0.2232 9.13 0.840 1.010 28.0 9.84 � 10ÿ3 9.60 � 106

23 6.30 � 104 0.1986 11.74 0.840 1.010 50.0 1.76 � 10ÿ2 9.60 � 106

Table 5
Numerical Parameters for channel ¯ow simulations at a low Reynolds number

Re L+
x h+ L+

z Nx Ny Nz Dx+ Dy+ Dz+ Dt+

7050 630 125 630 16 65 64 39.4 0.15-6.13 9.84 0.25
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One must consider the accuracy of particle trajectories as well as the accuracy of turbulence
statistics when selecting grid spacings. In Table 5, Nx, Ny and Nz denote the numbers of grid
points in the x, y and z directions, respectively, and, Dx+, Dy+ and Dz+ are the dimensionless
collocation grid spacings in the x, y and z directions, respectively. Since the velocity ®eld is
dealiased in the x and z directions, the e�ective grid spacings in those directions are larger than
the collocation grid spacings by the factor 1.5. The grid points in the x and z directions are
evenly spaced. In the y direction, the grid points are not evenly spaced. Since Chebyshev
polynomials are used in the y direction, the grid points are given by the Chebyshev collocation
points, which are more closely spaced near the channel walls. For the low Reynolds number
channel reported in Part II, the grid spacings are the same as those used by McLaughlin
(1989).

In general, one could use di�erent time steps for the integration of the ¯uid and particle
equations of motion. However, the time step used in the simulations in Part II was 0.25 time
wall units for both the ¯uid and the droplets. The time step is determined by considerations of
stability and accuracy. Lyons et al. (1991) found that Dt+=0.25 provided su�cient accuracy
for the time integration of the ¯uid velocity ®eld in the channel and that the time integration
was numerically stable. When one is tracking small particles, one should also consider the
particle relaxation time when determining a suitable time step. If Dt+>t+, one might expect
that the trajectories of the particles would be inaccurate. However, if t+<1, the particles move
with the surrounding ¯uid to a good approximation. Thus, in this case, provided that the time
step is small enough to accurately simulate the channel ¯ow, it should also su�ce for the
particle calculations. Table 4 shows that Runs 3 and 8 violated the condition Dt+Wt+.
However, when the runs were repeated with Dt+=0.125, the results for the collision rates were
the same within the statistical uncertainty.

If the particle motion is predominately controlled by Brownian motion, the time step should
be small enough that the Brownian root-mean-square displacement over a time step should be
smaller than the grid spacing. This ensures that the coupling between Brownian motion and
the small scales of turbulence is captured. However, for the high Sc numbers in Table 4, the
contribution of Brownian motion is expected to be negligible.

Finally, a time step much smaller than the mean time between collisions, tc, is required to
prevent multiple collisions of a single particle within a time step, which the current algorithm
would not account for.

The simulation of the particle phase introduces additional numerical parameters. The
number of droplets, Np, released at the initial time is determined by the initial number
concentration and the size of the computational domain:

Np � C�0 L
�
x 2h

�L�z ; �49�
where

C�0 � C0l
�3 �50�

is the number of particles in a wall volume unit. For the runs carried out in Part II, Np varied
in the range 50,000±300,000. Previous work by Kontomaris et al. (1992) has shown that about
8000 particle trajectories su�ce for accurate single particle Lagrangian statistics. When the
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determination of the average collision rate is sought, a su�cient number of particles is required

to obtain a statistically signi®cant collision rate over a given run. Therefore, for slowly

colliding small droplets a large number of droplets must be traced. However, if the

monodispersity of the suspension must be approximately preserved over the duration of a run,

the number of droplets must be restricted to small values. This would be the case for rapidly

colliding large droplets. Furthermore, the number of droplets should be limited to a range

where the omission of feedback e�ects does not compromise the accuracy of the results.

Finally, the feasible number of droplets is limited by the available computational memory and

speed.

The collision search lattice requires the speci®cation of the number of slices of the

computational domain, kx and kz. The size of a slice in the downstream and spanwise

directions has to be su�ciently large that collisions between particles originating from locations

more than one slice apart (in the both x and z directions) are unlikely over the duration of a

time step (Dt+=0.25.) An appropriate constraint on the slice widths DL+
x and DL+

z is that

they exceed twice the distance that two particles are likely to move relative to each other over

a time step:

DL�x
2

> jDv�x jDt�; �51�

DL�z
2

> jDv�z jDt�: �52�

The relative velocities of small particles can be estimated as

jDv�x j1�2�1=2u
0�
x ; �53�

jDv�z j1�2�1=2u
0�
z ; �54�

where u'x and u'z are the root-mean-square values of the ¯uid velocity ¯uctuations. Any

correlation in the motion of neighboring particles would reduce their relative velocity. In the

core of the channel, turbulence intensities are expected to be of order 1 wall unit. The

streamwise intensity reaches a value of about 2.5 in the vicinity of the wall. Therefore, the

constraints on DL+
x and DL+

z become DL+
x >1.77 and DL+

z >0.71. The channel used in Part II

was divided into 16 � 64 slices. The size of each slice in wall units was (630/16) � 250 � (630/

64) or 39.38 � 250 � 9.84 in the downstream (x), normal (y), and spanwise (z) directions.

A ®nal computational parameter that one must select is the duration of a run, Tf. There are

a number of factors that one must consider in selecting this parameter. First, Tf should be

larger than the largest time scales that must be studied. If the typical behavior of a

phenomenon is in¯uenced by the large turbulence eddies in the channel core, Tf must be larger

than TE, where TE is the Eulerian integral time scale in the core. The characteristic time of the

wall eddies is 100 wall time units. Allowing the simulation to proceed over several eddy

turnover times permits each droplet to sample a variety of velocity ¯uctuations that are typical

of the turbulent channel ¯ow.
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It is also desirable that the simulation time be large compared to the particle relaxation time,
t, to allow the particles to become fully entrained in the surrounding ¯uid and to eliminate the
e�ect of their initial velocity. Finally, collision statistics must be collected over times large
relative to the mean free time between collisions of a single particle, tc. This constraint can be
examined at the end of a run after the mean collision time has been determined.
Other considerations, however, may limit the desired run time. For example, the primary

goal pursued in Part II was to determine the collision rate between identical droplets. Since
droplets coalesce upon collision, the duration of the run was limited to the early stages of
evolution while the suspension of droplets remained nearly monodisperse. Furthermore, an
approximately constant and uniform droplet concentration distribution was desirable over the
time that collision statistics were collected to simplify the interpretation of the results.
Therefore, the duration of a run was limited to the early stages of evolution while particle
segregation near the channel walls, as discussed by Chen and McLaughlin (1995), and droplet
deposition did not signi®cantly modify the initially uniform droplet distribution. Since the rate
of deposition increases with droplet relaxation time, channel depletion is most severe for the
droplets with the largest relaxation times.
The duration of all runs in Part II except Run 23 was 100 wall time units. This was a

compromise between the desire to sample several eddy turnover times and the desire to
maintain a constant concentration pro®le and a monodisperse particle size distribution.
This time is su�cient to permit the droplets to reach equilibrium with the surrounding ¯uid
for t+W100. Run 23, however, for the droplets with t+=50, was extended for 300 wall time
units.

4. Accuracy of computed collision rates

The accuracy of the computed collision rates must be assessed. Potential sources of error
include inadequate resolution of the Eulerian ¯ow ®elds, time-stepping errors in integrating the
particle equation of motion, unaccounted multiple collisions of a given particle within the same
time step, unaccounted collisions due to inadequate search grid spacing, and statistical errors
due to a limited number of collisions.

4.1. E�ect of ¯ow resolution

The numbers of grid points in the x, y, and z directions were 16, 65 and 64,
respectively. A few simulations were carried out with larger numbers of grid points in each
direction. The results showed that the above resolution provided adequate accuracy for the
collision rates.

4.2. E�ect of velocity interpolation

The e�ect of interpolation accuracy on collisions was studied by comparing simulations in
which PHI was used with simulations in which DS was used. Table 6 gives the total number of
collisions over the simulation time, Nc, for two values of t+. For the t+=1.4 droplets, the
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droplet±¯uid density ratio was chosen to be 100.0. This makes d+ su�ciently large to obtain
statistically signi®cant numbers of collisions. For the t+=28 droplets, the density ratio was
713. For both case, the simulation time was 100 wall time units. The initial volume fractions
were 6.52 � 10ÿ5 and 1.56 � 10ÿ4, respectively, for the t+=1.4 and t+=28 droplets. The
corresponding mass fractions were 6.48 � 10ÿ3 and 0.111. At the initial time, the droplets were
randomly distributed throughout the channel. The Reynolds number of the channel ¯ow was
7050.
The results in Table 6 indicate that the errors caused by PHI are considered acceptable for

the purposes of this paper. The largest errors are for the droplets with the smallest values of
t+ since these droplets are a�ected most strongly by the smallest eddies. The interpolation
errors for these droplets are comparable with the statistical uncertainty in the collision rate. In
what follows, the results presented were obtained by using PHI, which is computationally 20
times cheaper than DS.

4.3. Time-stepping errors

When the time step used in the integration of the equation of particle motion is not
su�ciently smaller than the particle relaxation time, signi®cant errors could accumulate in the
calculation of the particle trajectories and the number of collisions. However, the e�ect of such
errors on the calculations to be reported in Part II was small. Table 7 shows the simulation
results for the droplets of t+=0.126 (Run 3). This is the smallest t+ used in this paper. The
simulation time was 100 time wall units. All collisions occurring in the channel were counted
during the indicated time period. The di�erence in the numbers of collisions is within statistical
uncertainty. This is consistent with the idea that, when t+<1, the droplets follow the ¯uid well
and, provided that the time step is small enough to accurately simulate the channel ¯ow, it
should also su�ce for the particle calculations.

Table 6
E�ect of interpolation methods on collisions

f0 ml t+ d+ rp/rf
Interpolation
method Nc

DS 439

6.52 � 10ÿ5 6.48 � 10ÿ3 1.4 0.498 100.0 PHI 374
Di�erence ÿ14.8%
DS 3383

1.56 � 10ÿ4 0.111 28 0.84 713.0 PHI 3466
Di�erence 2.45%

Table 7
E�ect of time step on collisions

t+ d+ rp/rf Dt Nc

0.126 0.271 30.0 0.125 137
0.126 0.271 30.0 0.25 145

M. Chen et al. / International Journal of Multiphase Flow 24 (1998) 1079±1103 1099



4.4. Unaccounted multiple collisions

The likelihood of multiple collisions per particle within a time step can be assessed after the
mean time between successive collisions, tc, of a single particle has been determined. It must be
ensured that the time step was su�ciently smaller than tc so that the collision rate was not
signi®cantly underestimated.

4.5. Unaccounted collisions between remote particles

The likelihood of collisions between particles originating outside the selected search
neighborhood can be assessed after the particle mean free path, lc, has been determined. It
must be ensured that the spacing of the collision search grid was su�ciently larger than lc so
that the collision rate was not signi®cantly underestimated.

4.6. Statistical accuracy of collision rates

When computing collision rates in speci®c volumes, it was necessary to choose su�ciently
large volumes that statistically signi®cant numbers of collisions could be obtained. A rough
estimate of the statistical uncertainty in the collision rate can be obtained from the reciprocal
of the square root of the number of collisions in a given volume. This requirement was
especially severe for small values of t+. For this reason, it was not possible to determine the
collision rate as a function of distance from the closest wall for t+<1.

4.7. Veri®cation against a known solution

Smoluchowski (1917) provided a simple mechanism to describe collision rates in uniform
shear ¯ow. The collision rate for monodisperse particles was expressed as

Z � 2

3
C2d3G; �55�

where G= dU/dy was the uniform shear rate.
To test the collision algorithm employed in this work, the simulation results obtained from a

laminar ¯ow are compared with (55). In the simulation, the ¯uid velocity was:

U�y� � 16u � �1ÿ exp��y2 ÿ 2hy�=�32hl����x̂: �56�

The velocity pro®le in (56) roughly ®ts the mean velocity observed from the turbulent channel
¯ow used in this work. Fig. 6 compares the simulation results with the collision rate obtained
from (55). In Fig. 6, u* = 75 cm/s, l* = 20 mm and t* = 26.67 ms were used. The calculation
was done for 16.8 mm olive oil droplets. The droplets were assumed to coalesce on impact. The
bin width in calculating the collision rate of the simulation results was 1 wall unit (20 mm).
The simulation results are consistent with Smoluchowski's theoretical prediction. The
discrepancies in the channel center were caused by the small number of collisions. Since the
shear rate in the channel center is very small, the number of collisions in each bin is of order
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unity. Close to the wall, where the shear rate is largest, the computed collision rates are in
good agreement with Smoluchowski's theory.

5. Computational requirements

5.1. Memory

The memory requirements are mainly determined by the Reynolds number of the channel
¯ow and the number of particles that are tracked. The number of grid points needed to
adequately resolve the channel ¯ow increases with the Reynolds number. For isotropic
homogeneous turbulence, the Kolmogorov theory suggests that the number of grid points
increases as Re9/4. Thus, doubling the Reynolds number increases the resolution requirements
by roughly a factor of 5.
In most of the computations that will be discussed in this paper, particle tracking

required more memory than the channel ¯ow simulation. One needs one dimensional arrays
for each particle coordinate, each component of the particle velocity, and each component
of the undisturbed ¯uid velocity at the particle locations. Furthermore, the values of the
particle coordinates, each component of the particle velocity, and each component of the

Fig. 6. Comparison of simulation results with Smoluchowski's theoretical predictions for a laminar shear ¯ow.
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undisturbed ¯uid velocity must be stored for the previous two time steps for the time-stepping
procedure.
If the collision algorithm is e�ciently implemented, it requires only a small fractional

increase in the memory requirements.

5.2. CPU time

There are three main contributors to the CPU time used by the simulations. They are the
simulation of the ¯ow ®eld, particle tracking, and collision detection. The CPU times presented
in this section were obtained with the SGI Power Challenge computers at NCSA. Since there
are several computers in the Power Challenge, the numbers may be a�ected by the particular
machine that the program is run on and the loading on the machine at the time of execution.
For a ®xed numerical channel, the CPU time for the simulation of the ¯ow ®eld is ®xed. For

the numerical channel used in this work, the CPU time used for simulating the turbulent ¯ow
®eld was 5.4 sec per time step. The CPU time used for particle tracking is proportional to the
number of particles. If one tracks 50,000 particles, the CPU time used for particle tracking is
61 sec per time step. The CPU time used for collision detection is proportional to the square of
particle numbers. If one has 50,000 particles in the channel, the CPU time used for collision
detection is 245 sec per time step for the collision search grid used in this work.
It is clear that the simulation of the ¯ow ®eld takes a negligible part of the total CPU time.

If one simulates more than 50,000 particles, collision detection uses the major part of the CPU
time.

6. Conclusion

Part I of this paper described a method for simulating the behavior of small coalescing
droplets in a turbulent channel ¯ow. A novel aspect of the method was the incorporation of
interdroplet collisions. The various input parameters, guidelines for their speci®cation, and the
accuracy of the computed collision rates were discussed. Part II reports collision statistics over
a wide range of conditions.
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